古泡学院 人工智能深度学习高薪就业班P5第5期(2022年)

人工智能深度学习高薪就业班P5第5期(2022年) [视频]

课程标签:
人工智能 古泡学院
更新时间:
2022-09-04 02:42:32
浏览次数:
本站只是课程及文件介绍,不提供课程下载服务。
课程介绍

课程内容全面覆盖深度学习算法及其项目实战,主要应用于计算机视觉与自然语言处理两大核心领域,配套实战案例与项目全部基于真实数据集与实际任务展开。大型项目完美结合当下行业趋势,培养满足企业就业需求的中高级人工智能算法工程师。

课程目录

├──01_直播课回放  

|   ├──1_直播1:开班典礼  

|   |   └──1人工智能CV NLP高薪实战班.mp4  1.88G

|   ├──2_Pycharm环境配置与Debug演示(没用过的同学必看)  

|   |   └──Pycharm环境配置与Debug演示(没用过的同学必看).mp4  125.43M

|   ├──3_直播2:深度学习必备基础-神经网络与卷积网络  

|   |   └──1.深度学习必备基础-神经网络与卷积网络.mp4  937.96M

|   ├──4_直播3:Transformer原理及其各领域应用分析  

|   |   └──Transformer原理及其各领域应用分析.mp4  517.79M

|   ├──5_额外补充:时间序列预测  

|   |   └──额外补充:时间序列预测.mp4  526.75M

|   └──6_直播4:Informer时间序列预测源码解读  

|   |   └──Informer时间序列预测源码解读.mp4  2.04G

├──02_深度学习必备核心算法  

|   ├──1_神经网络算法解读  

|   |   └──1-神经网络算法解读.mp4  860.40M

|   ├──2_卷积神经网络算法解读  

|   |   └──2-卷积神经网络算法解读.mp4  557.80M

|   └──3_递归神经网络算法解读  

|   |   └──3-递归神经网络算法解读.mp4  457.19M

├──03_深度学习核心框架PyTorch  

|   ├──1_PyTorch框架介绍与配置安装  

|   |   ├──1-PyTorch框架与其他框架区别分析1.mp4  33.28M

|   |   └──2-CPU与GPU版本安装方法解读1.mp4  100.62M

|   ├──2_使用神经网络进行分类任务  

|   |   ├──1-数据集与任务概述2.mp4  43.39M

|   |   ├──2-基本模块应用测试2.mp4  47.67M

|   |   ├──3-网络结构定义方法2.mp4  55.64M

|   |   ├──4-数据源定义简介2.mp4  39.02M

|   |   ├──5-损失与训练模块分析2.mp4  42.36M

|   |   ├──6-训练一个基本的分类模型2.mp4  54.64M

|   |   └──7-参数对结果的影响2.mp4  51.69M

|   ├──3_神经网络回归任务-气温预测  

|   |   └──神经网络回归任务-气温预测1.mp4  254.20M

|   ├──4_卷积网络参数解读分析  

|   |   ├──1-输入特征通道分析2.mp4  56.09M

|   |   ├──2-卷积网络参数解读2.mp4  40.61M

|   |   └──3-卷积网络模型训练2.mp4  77.40M

|   ├──5_图像识别模型与训练策略(重点)  

|   |   ├──1-任务分析与图像数据基本处理2.mp4  51.97M

|   |   ├──10-测试结果演示分析1.mp4  151.05M

|   |   ├──2-数据增强模块2.mp4  54.62M

|   |   ├──3-数据集与模型选择1.mp4  51.69M

|   |   ├──4-迁移学习方法解读1.mp4  67.99M

|   |   ├──5-输出层与梯度设置1.mp4  79.62M

|   |   ├──6-输出类别个数修改1.mp4  63.17M

|   |   ├──7-优化器与学习率衰减1.mp4  66.24M

|   |   ├──8-模型训练方法1.mp4  68.12M

|   |   └──9-重新训练全部模型1.mp4  59.90M

|   ├──6_DataLoader自定义数据集制作  

|   |   ├──1-Dataloader要完成的任务分析1.mp4  43.31M

|   |   ├──2-图像数据与标签路径处理1.mp4  58.77M

|   |   ├──3-Dataloader中需要实现的方法分析1.mp4  46.99M

|   |   └──4-实用Dataloader加载数据并训练模型1.mp4  77.87M

|   ├──7_LSTM文本分类实战  

|   |   ├──1-数据集与任务目标分析1.mp4  52.85M

|   |   ├──2-文本数据处理基本流程分析1.mp4  56.02M

|   |   ├──3-命令行参数与DEBUG1.mp4  36.56M

|   |   ├──4-训练模型所需基本配置参数分析1.mp4  40.96M

|   |   ├──5-预料表与字符切分1.mp4  32.02M

|   |   ├──6-字符预处理转换ID1.mp4  34.42M

|   |   ├──7-LSTM网络结构基本定义1.mp4  34.77M

|   |   ├──8-网络模型预测结果输出1.mp4  39.15M

|   |   └──9-模型训练任务与总结1.mp4  45.20M

|   └──8_PyTorch框架Flask部署例子  

|   |   ├──1-基本结构与训练好的模型加载.mp4  21.06M

|   |   ├──2-服务端处理与预测函数.mp4  40.97M

|   |   └──3-基于Flask测试模型预测结果.mp4  46.30M

├──04_MMLAB实战系列  

|   ├──10_第四模块:DBNET文字检测  

|   |   ├──1-文字检测数据概述与配置文件.mp4  56.65M

|   |   ├──2-配置文件参数设置.mp4  38.79M

|   |   ├──3-Neck层特征组合.mp4  32.09M

|   |   ├──4-损失函数模块概述.mp4  43.16M

|   |   └──5-损失计算方法.mp4  59.39M

|   ├──11_第四模块:ANINET文字识别  

|   |   ├──1-数据集与环境概述.mp4  55.62M

|   |   ├──2-配置文件修改方法.mp4  52.54M

|   |   ├──3-Bakbone模块得到特征.mp4  42.15M

|   |   ├──4-视觉Transformer模块的作用.mp4  46.02M

|   |   ├──5-视觉模型中的编码与解码的效果.mp4  54.54M

|   |   ├──6-文本模型中的结构分析.mp4  38.70M

|   |   ├──7-迭代修正模块.mp4  38.18M

|   |   └──8-输出层与损失计算.mp4  52.85M

|   ├──12_第四模块:KIE基于图模型的关键信息抽取  

|   |   ├──1-配置文件以及要完成的任务解读.mp4  51.60M

|   |   ├──2-KIE数据集格式调整方法.mp4  69.50M

|   |   ├──3-配置文件与标签要进行处理操作.mp4  47.88M

|   |   ├──4-边框要计算的特征分析.mp4  35.62M

|   |   ├──5-标签数据处理与关系特征提取.mp4  56.52M

|   |   ├──6-特征合并处理.mp4  43.79M

|   |   ├──7-准备拼接边与点特征.mp4  41.42M

|   |   └──8-整合得到图模型输入特征.mp4  72.02M

|   ├──12_第五模块:stylegan2源码解读  

|   |   ├──1-要完成的任务与基本思想概述.mp4  57.84M

|   |   ├──2-得到style特征编码.mp4  69.56M

|   |   ├──3-特征编码风格拼接.mp4  36.81M

|   |   ├──4-基础风格特征卷积模块.mp4  54.74M

|   |   ├──5-上采样得到输出结果.mp4  40.79M

|   |   └──6-损失函数概述.mp4  26.60M

|   ├──13_第六模块:BasicVSR++视频超分辨重构源码解读  

|   |   ├──1-要完成的任务分析与配置文件.mp4  27.40M

|   |   ├──10-传播流程整体完成一圈.mp4  61.59M

|   |   ├──11-完成输出结果.mp4  51.61M

|   |   ├──2-特征基础提取模块.mp4  44.62M

|   |   ├──3-光流估计网络模块.mp4  25.71M

|   |   ├──4-基于光流完成对齐操作.mp4  40.28M

|   |   ├──5-偏移量计算方法1.mp4  32.52M

|   |   ├──6-双向计算特征对齐.mp4  37.02M

|   |   ├──7-提特征传递流程分析.mp4  37.28M

|   |   ├──8-序列传播计算.mp4  39.92M

|   |   └──9-准备变形卷积模块的输入.mp4  44.76M

|   ├──14_第七模块:多模态3D目标检测算法源码解读  

|   |   ├──1-环境配置与数据集概述.mp4  51.56M

|   |   ├──10-3D卷积特征融合.mp4  56.81M

|   |   ├──11-输出层预测结果.mp4  80.85M

|   |   ├──2-数据与标注文件介绍.mp4  37.53M

|   |   ├──3-基本流程梳理并进入debug模式.mp4  50.38M

|   |   ├──4-数据与图像特征提取模块.mp4  58.07M

|   |   ├──5-体素索引位置获取.mp4  64.77M

|   |   ├──6-体素特征提取方法解读.mp4  37.62M

|   |   ├──7-体素特征计算方法分析.mp4  70.76M

|   |   ├──8-全局体素特征提取.mp4  96.00M

|   |   └──9-多模态特征融合.mp4  68.41M

|   ├──15_第八模块:模型蒸馏应用实例  

|   |   ├──1-任务概述与工具使用.mp4  39.69M

|   |   ├──2-Teacher与Student网络结构定义.mp4  46.30M

|   |   ├──3-训练T与S得到蒸馏模型.mp4  70.67M

|   |   ├──4-开始模型训练过程与问题修正.mp4  57.31M

|   |   ├──5-日志输出与模型分离.mp4  70.30M

|   |   ├──6-分别得到Teacher与Student模型.mp4  45.78M

|   |   └──7-实际测试效果演示.mp4  39.06M

|   ├──16_第八模块:模型剪枝方法概述分析  

|   |   ├──1-SuperNet网络结构分析与剪枝概述.mp4  40.62M

|   |   └──2-搜索匹配到符合计算量的模型并训练.mp4  46.88M

|   ├──17_第九模块:mmaction行为识别  

|   |   └──创建自己的行为识别标注数据集.mp4  232.78M

|   ├──18_额外补充  

|   |   └──在源码中加入各种注意力机制方法.mp4  122.52M

|   ├──1_MMCV安装方法  

|   |   └──MMCV安装方法.mp4  55.80M

|   ├──2_第一模块:分类任务基本操作  

|   |   ├──1-准备MMCLS项目.mp4  32.30M

|   |   ├──2-基本参数配置解读.mp4  34.57M

|   |   ├──3-各模块配置文件组成.mp4  35.85M

|   |   ├──4-生成完整配置文件.mp4  24.49M

|   |   ├──5-根据文件夹定义数据集.mp4  40.31M

|   |   ├──6-构建自己的数据集.mp4  36.38M

|   |   ├──7-训练自己的任务.mp4  39.36M

|   |   └──MMCLS问题修正1.mp4  23.54M

|   ├──3_第一模块:训练结果测试与验证  

|   |   ├──1-测试DEMO效果.mp4  25.54M

|   |   ├──2-测试评估模型效果.mp4  27.62M

|   |   ├──3-MMCLS中增加一个新的模块.mp4  62.65M

|   |   ├──4-修改配置文件中的参数.mp4  67.76M

|   |   ├──5-数据增强流程可视化展示.mp4  37.44M

|   |   ├──6-Grad-Cam可视化方法.mp4  41.22M

|   |   ├──7-可视化细节与效果分析.mp4  124.24M

|   |   ├──8-MMCLS可视化模块应用.mp4  72.11M

|   |   └──9-模型分析脚本使用.mp4  36.41M

|   ├──4_第一模块:模型源码DEBUG演示  

|   |   ├──1-VIT任务概述.mp4  30.01M

|   |   ├──2-数据增强模块概述分析.mp4  49.62M

|   |   ├──3-PatchEmbedding层.mp4  25.34M

|   |   ├──4-前向传播基本模块.mp4  38.92M

|   |   └──5-CLS与输出模块.mp4  44.08M

|   ├──5_第二模块:使用分割模块训练自己的数据集  

|   |   ├──1-项目配置基本介绍.mp4  74.27M

|   |   ├──2-数据集标注与制作方法.mp4  56.89M

|   |   ├──3-跟别预测类别数修改配置文件.mp4  39.53M

|   |   ├──4-加载预训练模型开始训练.mp4  86.57M

|   |   └──5-预测DEMO演示.mp4  21.93M

|   ├──6_第二模块:基于Unet进行各种策略修改  

|   |   ├──1-配置文件解读.mp4  32.16M

|   |   ├──2-编码层模块.mp4  32.51M

|   |   ├──3-上采样与输出层.mp4  28.30M

|   |   ├──4-辅助层的作用.mp4  19.87M

|   |   ├──5-给Unet添加一个neck层.mp4  30.41M

|   |   ├──6-如何修改参数适配网络结构.mp4  21.77M

|   |   ├──7-将Unet特征提取模块替换成transformer.mp4  22.46M

|   |   └──8-VIT模块源码分析.mp4  45.52M

|   ├──7_第二模块:分割任务CVPR最新Backbone设计及其应用  

|   |   ├──1-注册自己的Backbone模块.mp4  34.35M

|   |   ├──10-汇总多层级特征进行输出.mp4  43.39M

|   |   ├──2-配置文件指定.mp4  35.89M

|   |   ├──3-DEBUG解读Backbone设计.mp4  40.49M

|   |   ├──4-PatchEmbedding的作用与实现.mp4  44.92M

|   |   ├──5-卷积位置编码计算方法.mp4  53.94M

|   |   ├──6-近似Attention模块实现.mp4  79.54M

|   |   ├──7-完成特征提取与融合模块.mp4  55.73M

|   |   ├──8-分割任务输出模块.mp4  57.77M

|   |   └──9-全局特征的作用与实现.mp4  56.38M

|   ├──8_第三模块:mmdet训练自己的数据任务  

|   |   ├──1-数据集标注与标签获取.mp4  31.39M

|   |   ├──2-COCO数据标注格式.mp4  28.21M

|   |   ├──3-通过脚本生成COCO数据格式.mp4  38.60M

|   |   ├──4-配置文件数据增强策略分析.mp4  45.64M

|   |   ├──5-训练所需配置说明.mp4(1).mp4  56.04M

|   |   ├──5-训练所需配置说明.mp4  56.04M

|   |   ├──6-模型训练与DEMO演示.mp4  35.31M

|   |   ├──7-模型测试与可视化分析模块.mp4  77.66M

|   |   └──8-补充:评估指标.mp4  14.11M

|   └──9_第三模块:DeformableDetr物体检测源码分析  

|   |   ├──1-特征提取与位置编码.mp4  38.20M

|   |   ├──10-分类与回归输出模块.mp4  49.77M

|   |   ├──11-预测输出结果与标签匹配模块.mp4  44.36M

|   |   ├──2-序列特征展开并叠加.mp4  51.11M

|   |   ├──3-得到相对位置点编码.mp4  28.85M

|   |   ├──4-准备Encoder编码层所需全部输入.mp4  37.96M

|   |   ├──5-编码层中的序列分析.mp4  39.77M

|   |   ├──6-偏移量offset计算.mp4  46.14M

|   |   ├──7-偏移量对齐操作.mp4  39.85M

|   |   ├──8-Encoder层完成特征对齐.mp4  51.88M

|   |   └──9-Decoder要完成的操作.mp4  39.02M

├──05_Opencv图像处理框架实战  

|   ├──10_项目实战-文档扫描OCR识别  

|   |   ├──1-整体流程演示.mp4  21.54M

|   |   ├──2-文档轮廓提取.mp4  27.85M

|   |   ├──3-原始与变换坐标计算.mp4  26.28M

|   |   ├──4-透视变换结果.mp4  32.92M

|   |   ├──5-tesseract-ocr安装配置.mp4  41.28M

|   |   └──6-文档扫描识别效果.mp4  28.90M

|   ├──11_图像特征-harris  

|   |   ├──1-角点检测基本原理.mp4  15.57M

|   |   ├──2-基本数学原理.mp4  30.62M

|   |   ├──3-求解化简.mp4  31.84M

|   |   ├──4-特征归属划分.mp4  43.27M

|   |   └──5-opencv角点检测效果.mp4  31.08M

|   ├──12_图像特征-sift  

|   |   ├──1-尺度空间定义.mp4  20.08M

|   |   ├──2-高斯差分金字塔.mp4  21.72M

|   |   ├──3-特征关键点定位.mp4  48.20M

|   |   ├──4-生成特征描述.mp4  24.70M

|   |   ├──5-特征向量生成.mp4  43.78M

|   |   └──6-opencv中sift函数使用.mp4  28.84M

|   ├──13_案例实战-全景图像拼接  

|   |   ├──1-特征匹配方法.mp4  28.61M

|   |   ├──2-RANSAC算法.mp4  34.54M

|   |   ├──2-图像拼接方法.mp4  45.01M

|   |   └──4-流程解读.mp4  21.70M

|   ├──14_项目实战-停车场车位识别  

|   |   ├──1-任务整体流程.mp4  71.44M

|   |   ├──2-所需数据介绍.mp4  34.36M

|   |   ├──3-图像数据预处理.mp4  56.79M

|   |   ├──4-车位直线检测.mp4  61.49M

|   |   ├──5-按列划分区域.mp4  54.71M

|   |   ├──6-车位区域划分.mp4  57.38M

|   |   ├──7-识别模型构建.mp4  41.24M

|   |   └──8-基于视频的车位检测.mp4  135.65M

|   ├──15_项目实战-答题卡识别判卷  

|   |   ├──1-整体流程与效果概述.mp4  29.54M

|   |   ├──2-预处理操作.mp4  24.12M

|   |   ├──3-填涂轮廓检测.mp4  25.71M

|   |   └──4-选项判断识别.mp4  57.16M

|   ├──16_背景建模  

|   |   ├──1-背景消除-帧差法.mp4  20.84M

|   |   ├──2-混合高斯模型.mp4  26.43M

|   |   ├──3-学习步骤.mp4  31.80M

|   |   └──4-背景建模实战.mp4  51.21M

|   ├──17_光流估计  

|   |   ├──1-基本概念.mp4  20.25M

|   |   ├──2-Lucas-Kanade算法.mp4  19.72M

|   |   ├──3-推导求解.mp4  25.99M

|   |   └──4-光流估计实战.mp4  64.27M

|   ├──18_Opencv的DNN模块  

|   |   ├──1-dnn模块.mp4  28.64M

|   |   └──2-模型加载结果输出.mp4  40.54M

|   ├──19_项目实战-目标追踪  

|   |   ├──1-目标追踪概述.mp4  49.79M

|   |   ├──2-多目标追踪实战.mp4  34.67M

|   |   ├──3-深度学习检测框架加载.mp4  43.67M

|   |   ├──4-基于dlib与ssd的追踪.mp4  73.06M

|   |   ├──5-多进程目标追踪.mp4  25.77M

|   |   └──6-多进程效率提升对比.mp4  78.17M

|   ├──1_课程简介与环境配置  

|   |   ├──0-课程简介2.mp4  5.42M

|   |   ├──2-Notebook与IDE环境.mp4  84.44M

|   |   └──2-Python与Opencv配置安装.mp4  33.33M

|   ├──20_卷积原理与操作  

|   |   ├──1-卷积神经网络的应用.mp4  36.23M

|   |   ├──1-卷积效果演示.mp4  24.63M

|   |   ├──2-卷积操作流程.mp4  41.19M

|   |   ├──2-卷积层解释.mp4  22.35M

|   |   ├──3-卷积计算过程.mp4  27.65M

|   |   ├──4-pading与stride.mp4  26.17M

|   |   ├──5-卷积参数共享.mp4  17.74M

|   |   └──6-池化层原理.mp4  16.14M

|   ├──21_项目实战-疲劳检测  

|   |   ├──1-关键点定位概述.mp4  28.50M

|   |   ├──2-获取人脸关键点.mp4  36.12M

|   |   ├──3-定位效果演示.mp4  45.47M

|   |   ├──4-闭眼检测.mp4  71.12M

|   |   └──5-检测效果.mp4  40.65M

|   ├──2_图像基本操作  

|   |   ├──1-计算机眼中的图像.mp4  30.92M

|   |   ├──2-视频的读取与处理.mp4  47.01M

|   |   ├──3-ROI区域.mp4  15.42M

|   |   ├──4-边界填充.mp4  21.50M

|   |   └──5-数值计算.mp4  40.09M

|   ├──3_阈值与平滑处理  

|   |   ├──1-图像平滑处理.mp4  24.74M

|   |   ├──2-高斯与中值滤波.mp4  20.60M

|   |   └──图像阈值.mp4  30.82M

|   ├──4_图像形态学操作  

|   |   ├──1-腐蚀操作.mp4  21.04M

|   |   ├──2-膨胀操作.mp4  12.30M

|   |   ├──3-开运算与闭运算.mp4  9.37M

|   |   ├──4-梯度计算.mp4  7.90M

|   |   └──5-礼帽与黑帽.mp4  15.92M

|   ├──5_图像梯度计算  

|   |   ├──1-Sobel算子.mp4  27.05M

|   |   ├──2-梯度计算方法.mp4  30.34M

|   |   └──3-scharr与lapkacian算子.mp4  27.44M

|   ├──6_边缘检测  

|   |   ├──1-Canny边缘检测流程.mp4  19.01M

|   |   ├──2-非极大值抑制.mp4  18.37M

|   |   └──3-边缘检测效果.mp4  36.68M

|   ├──7_图像金字塔与轮廓检测  

|   |   ├──1-轮廓检测方法.mp4  19.36M

|   |   ├──1-模板匹配方法.mp4  47.39M

|   |   ├──1-图像金字塔定义.mp4  19.73M

|   |   ├──2-金字塔制作方法.mp4  25.52M

|   |   ├──2-轮廓检测结果.mp4  34.41M

|   |   ├──2-匹配效果展示.mp4  21.19M

|   |   └──3-轮廓特征与近似.mp4  37.56M

|   ├──8_直方图与傅里叶变换  

|   |   ├──1-傅里叶概述.mp4  38.84M

|   |   ├──1-直方图定义.mp4  23.68M

|   |   ├──2-均衡化原理.mp4  31.40M

|   |   ├──2-频域变换结果.mp4  26.30M

|   |   ├──3-低通与高通滤波.mp4  27.38M

|   |   └──3-均衡化效果.mp4  27.26M

|   └──9_项目实战-信用卡数字识别  

|   |   ├──2-环境配置与预处理.mp4  34.89M

|   |   ├──3-模板处理方法.mp4  23.73M

|   |   ├──4-输入数据处理方法.mp4  28.93M

|   |   ├──5-模板匹配得出识别结果.mp4  47.77M

|   |   └──总体流程与方法讲解.mp4  20.70M

├──06_综合项目-物体检测经典算法实战  

|   ├──10_EfficientNet网络  

|   |   └──第八课:EfficientNet网络模型.mp4  538.52M

|   ├──11_EfficientDet检测算法  

|   |   └──第十一章:EfficientDet检测算法.mp4  448.05M

|   ├──12_基于Transformer的detr目标检测算法  

|   |   ├──1-DETR目标检测基本思想解读.mp4  19.39M

|   |   ├──2-整体网络架构分析.mp4  31.68M

|   |   ├──3-位置信息初始化query向量.mp4  20.01M

|   |   ├──4-注意力机制的作用方法.mp4  20.90M

|   |   └──5-训练过程的策略.mp4  28.45M

|   ├──13_detr目标检测源码解读  

|   |   ├──1-项目环境配置解读.mp4  40.46M

|   |   ├──2-数据处理与dataloader.mp4  64.15M

|   |   ├──3-位置编码作用分析.mp4  48.00M

|   |   ├──4-backbone特征提取模块.mp4  35.66M

|   |   ├──5-mask与编码模块.mp4  34.80M

|   |   ├──6-编码层作用方法.mp4  42.90M

|   |   ├──7-Decoder层操作与计算.mp4  30.19M

|   |   ├──8-输出预测结果.mp4  41.33M

|   |   └──9-损失函数与预测输出.mp4  41.23M

|   ├──1_深度学习经典检测方法概述  

|   |   ├──1-检测任务中阶段的意义.mp4  15.19M

|   |   ├──2-不同阶段算法优缺点分析.mp4  10.72M

|   |   ├──3-IOU指标计算.mp4  11.78M

|   |   ├──4-评估所需参数计算.mp4  26.28M

|   |   └──5-map指标计算.mp4  19.68M

|   ├──2_YOLO-V1整体思想与网络架构  

|   |   ├──2-检测算法要得到的结果.mp4  13.67M

|   |   ├──3-整体网络架构解读.mp4  30.72M

|   |   ├──4-位置损失计算.mp4  19.02M

|   |   ├──5-置信度误差与优缺点分析.mp4  26.90M

|   |   └──YOLO算法整体思路解读.mp4  14.73M

|   ├──3_YOLO-V2改进细节详解  

|   |   ├──2-网络结构特点.mp4  15.74M

|   |   ├──3-架构细节解读.mp4  18.96M

|   |   ├──4-基于聚类来选择先验框尺寸.mp4  24.28M

|   |   ├──5-偏移量计算方法.mp4  27.59M

|   |   ├──6-坐标映射与还原.mp4  10.12M

|   |   ├──7-感受野的作用.mp4  28.16M

|   |   ├──8-特征融合改进.mp4  19.25M

|   |   └──V2版本细节升级概述.mp4  13.42M

|   ├──4_YOLO-V3核心网络模型  

|   |   ├──1-V3版本改进概述.mp4  18.32M

|   |   ├──2-多scale方法改进与特征融合.mp4  17.12M

|   |   ├──3-经典变换方法对比分析.mp4  10.88M

|   |   ├──4-残差连接方法解读.mp4  18.69M

|   |   ├──5-整体网络模型架构分析.mp4  12.98M

|   |   ├──6-先验框设计改进.mp4  13.08M

|   |   └──7-sotfmax层改进.mp4  10.65M

|   ├──5_项目实战-基于V3版本进行源码解读  

|   |   ├──1-数据与环境配置.mp4  65.57M

|   |   ├──10-网格偏移计算.mp4  33.97M

|   |   ├──11-模型要计算的损失概述.mp4  23.18M

|   |   ├──12-标签值格式修改.mp4  28.31M

|   |   ├──13-坐标相对位置计算.mp4  32.84M

|   |   ├──14-完成所有损失函数所需计算指标.mp4  35.37M

|   |   ├──15-模型训练与总结.mp4  72.95M

|   |   ├──16-预测效果展示.mp4  34.56M

|   |   ├──2-训练参数设置.mp4  23.90M

|   |   ├──3-数据与标签读取.mp4  42.55M

|   |   ├──4-标签文件读取与处理.mp4  27.52M

|   |   ├──5-debug模式介绍.mp4  27.29M

|   |   ├──6-基于配置文件构建网络模型.mp4  42.08M

|   |   ├──7-路由层与shortcut层的作用.mp4  33.77M

|   |   ├──8-YOLO层定义解析.mp4  61.13M

|   |   └──9-预测结果计算.mp4  46.05M

|   ├──6_基于YOLO-V3训练自己的数据集与任务  

|   |   ├──1-Labelme工具安装.mp4  14.33M

|   |   ├──2-数据信息标注.mp4  32.14M

|   |   ├──3-完成标签制作.mp4  31.79M

|   |   ├──4-生成模型所需配置文件.mp4  36.75M

|   |   ├──5-json格式转换成yolo-v3所需输入.mp4  21.00M

|   |   ├──6-完成输入数据准备工作.mp4  40.14M

|   |   ├──7-训练代码与参数配置更改.mp4  44.34M

|   |   └──8-训练模型并测试效果.mp4  38.54M

|   ├──7_YOLO-V4版本算法解读  

|   |   ├──1-V4版本整体概述.mp4  15.10M

|   |   ├──10-PAN模块解读.mp4  20.68M

|   |   ├──11-激活函数与整体架构总结.mp4  19.23M

|   |   ├──2-V4版本贡献解读.mp4  10.10M

|   |   ├──3-数据增强策略分析.mp4  24.74M

|   |   ├──4-DropBlock与标签平滑方法.mp4  19.41M

|   |   ├──5-损失函数遇到的问题.mp4  14.30M

|   |   ├──6-CIOU损失函数定义.mp4  10.87M

|   |   ├──7-NMS细节改进.mp4  16.70M

|   |   ├──8-SPP与CSP网络结构.mp4  14.86M

|   |   └──9-SAM注意力机制模块.mp4  22.53M

|   ├──8_V5版本项目配置  

|   |   ├──1-整体项目概述.mp4  35.81M

|   |   ├──2-训练自己的数据集方法.mp4  41.37M

|   |   ├──3-训练数据参数配置.mp4  51.53M

|   |   └──4-测试DEMO演示.mp4  50.52M

|   └──9_V5项目工程源码解读  

|   |   ├──1-数据源DEBUG流程解读.mp4  48.18M

|   |   ├──10-完成配置文件解析任务.mp4  58.85M

|   |   ├──11-前向传播计算.mp4  30.84M

|   |   ├──12-BottleneckCSP层计算方法.mp4  33.86M

|   |   ├──13-1 SPP层计算细节分析.mp4  29.21M

|   |   ├──13-Head层流程解读.mp4  29.16M

|   |   ├──14-上采样与拼接操作.mp4  21.52M

|   |   ├──15-输出结果分析.mp4  41.76M

|   |   ├──16-超参数解读.mp4  34.98M

|   |   ├──17-命令行参数介绍.mp4  44.30M

|   |   ├──18-训练流程解读.mp4  46.85M

|   |   ├──19-各种训练策略概述.mp4  38.47M

|   |   ├──2-图像数据源配置.mp4  34.70M

|   |   ├──20-模型迭代过程.mp4  38.46M

|   |   ├──3-加载标签数据.mp4  26.38M

|   |   ├──4-Mosaic数据增强方法.mp4  28.23M

|   |   ├──5-数据四合一方法与流程演示.mp4  41.73M

|   |   ├──6-getItem构建batch.mp4  33.08M

|   |   ├──7-网络架构图可视化工具安装.mp4  34.37M

|   |   ├──8-V5网络配置文件解读.mp4  35.79M

|   |   └──9-Focus模块流程分析.mp4  21.97M

├──07_图像分割实战  

|   ├──10_MaskRcnn网络框架源码详解  

|   |   ├──1-FPN层特征提取原理解读.mp4  42.35M

|   |   ├──10-RoiPooling层的作用与目的.mp4  33.49M

|   |   ├──11-RorAlign操作的效果.mp4  25.75M

|   |   ├──12-整体框架回顾.mp4  28.90M

|   |   ├──2-FPN网络架构实现解读.mp4  55.81M

|   |   ├──3-生成框比例设置.mp4  28.29M

|   |   ├──4-基于不同尺度特征图生成所有框.mp4  32.98M

|   |   ├──5-RPN层的作用与实现解读.mp4  30.94M

|   |   ├──6-候选框过滤方法.mp4  15.63M

|   |   ├──7-Proposal层实现方法.mp4  33.36M

|   |   ├──8-DetectionTarget层的作用.mp4  25.74M

|   |   └──9-正负样本选择与标签定义.mp4  27.64M

|   ├──11_基于MASK-RCNN框架训练自己的数据与任务  

|   |   ├──1-Labelme工具安装.mp4  14.33M

|   |   ├──2-使用labelme进行数据与标签标注.mp4  26.34M

|   |   ├──3-完成训练数据准备工作.mp4  26.65M

|   |   ├──4-maskrcnn源码修改方法.mp4  63.60M

|   |   ├──5-基于标注数据训练所需任务.mp4  39.77M

|   |   └──6-测试与展示模块.mp4  38.65M

|   ├──1_图像分割及其损失函数概述  

|   |   ├──1-语义分割与实例分割概述.mp4  20.29M

|   |   ├──2-分割任务中的目标函数定义.mp4  20.04M

|   |   └──3-MIOU评估标准.mp4  9.07M

|   ├──2_卷积神经网络原理与参数解读  

|   |   ├──1-卷积神经网络应用领域.mp4  21.25M

|   |   ├──10-VGG网络架构.mp4  19.38M

|   |   ├──11-残差网络Resnet.mp4  18.06M

|   |   ├──12-感受野的作用.mp4  16.91M

|   |   ├──2-卷积的作用.mp4  22.71M

|   |   ├──3-卷积特征值计算方法.mp4  21.27M

|   |   ├──4-得到特征图表示.mp4  18.28M

|   |   ├──5-步长与卷积核大小对结果的影响.mp4  19.91M

|   |   ├──6-边缘填充方法.mp4  17.32M

|   |   ├──7-特征图尺寸计算与参数共享.mp4  22.03M

|   |   ├──8-池化层的作用.mp4  11.36M

|   |   └──9-1整体网络架构.mp4  17.03M

|   ├──3_Unet系列算法讲解  

|   |   ├──1-Unet网络编码与解码过程.mp4  18.34M

|   |   ├──2-网络计算流程.mp4  16.18M

|   |   ├──3-Unet升级版本改进.mp4  15.79M

|   |   └──4-后续升级版本介绍.mp4  18.42M

|   ├──4_unet医学细胞分割实战  

|   |   ├──1-医学细胞数据集介绍与参数配置.mp4  71.25M

|   |   ├──2-数据增强工具.mp4  61.52M

|   |   ├──3-Debug模式演示网络计算流程.mp4  41.41M

|   |   ├──4-特征融合方法演示.mp4  30.09M

|   |   ├──5-迭代完成整个模型计算任务.mp4  33.59M

|   |   └──6-模型效果验证.mp4  47.33M

|   ├──5_U2NET显著性检测实战  

|   |   ├──1-任务目标与网络整体介绍.mp4  58.71M

|   |   ├──2-显著性检测任务与目标概述.mp4  54.00M

|   |   ├──3-编码器模块解读.mp4  43.71M

|   |   ├──4-解码器输出结果.mp4  27.95M

|   |   └──5-损失函数与应用效果.mp4  34.39M

|   ├──6_deeplab系列算法  

|   |   ├──1-deeplab分割算法概述.mp4  13.85M

|   |   ├──2-空洞卷积的作用.mp4  16.78M

|   |   ├──3-感受野的意义.mp4  19.42M

|   |   ├──4-SPP层的作用.mp4  19.07M

|   |   ├──5-ASPP特征融合策略.mp4  13.50M

|   |   └──6-deeplabV3Plus版本网络架构.mp4  24.12M

|   ├──7_基于deeplabV3+版本进行VOC分割实战  

|   |   ├──1-PascalVoc数据集介绍.mp4  70.17M

|   |   ├──2-项目参数与数据集读取.mp4  60.36M

|   |   ├──3-网络前向传播流程.mp4  33.14M

|   |   ├──4-ASPP层特征融合.mp4  51.23M

|   |   └──5-分割模型训练.mp4  35.01M

|   ├──8_医学心脏视频数据集分割建模实战  

|   |   ├──1-数据集与任务概述.mp4  45.59M

|   |   ├──2-项目基本配置参数.mp4  33.36M

|   |   ├──3-任务流程解读.mp4  69.17M

|   |   ├──4-文献报告分析.mp4  122.71M

|   |   ├──5-补充:视频数据源特征处理方法概述.mp4  26.37M

|   |   └──6-补充:R(2plus1)D处理方法分析.mp4  18.92M

|   └──9_物体检测框架-MaskRcnn项目介绍与配置  

|   |   ├──0-Mask-Rcnn开源项目简介.mp4  88.22M

|   |   ├──0-参数配置.mp4  97.90M

|   |   └──0-开源项目数据集.mp4  42.53M

├──08_行为识别实战  

|   ├──1_slowfast算法知识点通俗解读  

|   |   ├──1-slowfast核心思想解读.mp4  74.90M

|   |   ├──2-核心网络结构模块分析.mp4  21.03M

|   |   ├──3-数据采样曾的作用.mp4  18.31M

|   |   ├──4-模型网络结构设计.mp4  19.34M

|   |   └──5-特征融合模块与总结分析.mp4  39.34M

|   ├──2_slowfast项目环境配置与配置文件  

|   |   ├──1-环境基本配置解读.mp4  45.39M

|   |   ├──2-目录各文件分析.mp4  36.89M

|   |   ├──3-配置文件作用解读.mp4  50.94M

|   |   ├──4-测试DEMO演示1.mp4  66.82M

|   |   ├──5-训练所需标签文件说明.mp4  48.82M

|   |   ├──6-训练所需视频数据准备.mp4  47.44M

|   |   ├──7-视频数据集切分操作.mp4  39.70M

|   |   └──8-完成视频分帧操作.mp4  32.82M

|   ├──3_slowfast源码详细解读  

|   |   ├──1-模型所需配置文件参数读取1.mp4  33.29M

|   |   ├──10-RoiAlign与输出层1.mp4  78.97M

|   |   ├──2-数据处理概述1.mp4  49.76M

|   |   ├──3-dataloader数据遍历方法1.mp4  56.90M

|   |   ├──4-数据与标签读取实例1.mp4  52.27M

|   |   ├──5-图像数据所需预处理方法1.mp4  66.81M

|   |   ├──6-slow与fast分别执行采样操作1.mp4  66.39M

|   |   ├──7-分别计算特征图输出结果1.mp4  56.69M

|   |   ├──8-slow与fast特征图拼接操作1.mp4  49.74M

|   |   └──9-resnetBolock操作1.mp4  53.66M

|   ├──4_基于3D卷积的视频分析与动作识别  

|   |   ├──1-3D卷积原理解读.mp4  20.66M

|   |   ├──2-UCF101动作识别数据集简介.mp4  51.73M

|   |   ├──3-测试效果与项目配置.mp4  55.64M

|   |   ├──4-视频数据预处理方法.mp4  32.30M

|   |   ├──5-数据Batch制作方法.mp4  46.71M

|   |   ├──6-3D卷积网络所涉及模块.mp4  37.81M

|   |   └──7-训练网络模型.mp4  38.85M

|   ├──5_视频异常检测算法与元学习  

|   |   ├──1-异常检测要解决的问题与数据集介绍.mp4  21.53M

|   |   ├──2-基本思想与流程分析.mp4  24.31M

|   |   ├──3-预测与常见问题.mp4  26.63M

|   |   ├──4-Meta-Learn要解决的问题.mp4  20.82M

|   |   ├──5-学习能力与参数定义.mp4  14.21M

|   |   ├──6-如何找到合适的初始化参数.mp4  23.41M

|   |   └──7-MAML算法流程解读.mp4  29.03M

|   ├──6_视频异常检测CVPR2021论文及其源码解读  

|   |   ├──1-论文概述与环境配置.mp4  26.66M

|   |   ├──2-数据集配置与读取.mp4  38.79M

|   |   ├──3-模型编码与解码结构.mp4  33.42M

|   |   ├──4-注意力机制模块打造.mp4  61.16M

|   |   ├──5-损失函数的目的.mp4  58.01M

|   |   ├──6-特征图生成.mp4  38.07M

|   |   └──7-MetaLearn与输出.mp4  29.84M

|   └──7_基础补充-Resnet模型及其应用实例  

|   |   ├──1-医学疾病数据集介绍.mp4  18.89M

|   |   ├──2-Resnet网络架构原理分析.mp4  24.85M

|   |   ├──3-dataloader加载数据集.mp4  64.83M

|   |   ├──4-Resnet网络前向传播.mp4  35.86M

|   |   ├──5-残差网络的shortcut操作.mp4  47.39M

|   |   ├──6-特征图升维与降采样操作.mp4  26.94M

|   |   └──7-网络整体流程与训练演示.mp4  67.49M

├──09_2022论文必备-Transformer实战系列  

|   ├──10_MedicalTransformer源码解读  

|   |   ├──1-项目环境配置1.mp4  25.33M

|   |   ├──2-医学数据介绍与分析1.mp4  56.73M

|   |   ├──3-基本处理操作1.mp4  25.81M

|   |   ├──4-AxialAttention实现过程1.mp4  36.92M

|   |   ├──5-位置编码向量解读1.mp4  27.85M

|   |   ├──6-注意力计算过程与方法1.mp4  52.18M

|   |   └──7-局部特征提取与计算1.mp4  40.96M

|   ├──11_商汤LoFTR算法解读  

|   |   ├──1-特征匹配的应用场景.mp4  87.39M

|   |   ├──10-总结分析.mp4  39.47M

|   |   ├──2-特征匹配的基本流程分析.mp4  15.96M

|   |   ├──3-整体流程梳理分析.mp4  16.50M

|   |   ├──4-CrossAttention的作用与效果.mp4  15.73M

|   |   ├──5-transformer构建匹配特征.mp4  33.83M

|   |   ├──6-粗粒度匹配过程与作用.mp4  26.05M

|   |   ├──7-特征图拆解操作.mp4  14.38M

|   |   ├──8-细粒度匹配的作用与方法.mp4  19.91M

|   |   └──9-基于期望预测最终位置.mp4  23.13M

|   ├──12_局部特征关键点匹配实战  

|   |   ├──1-项目与参数配置解读1.mp4  44.53M

|   |   ├──10-得到精细化输出结果1.mp4  19.39M

|   |   ├──11-通过期望计算最终输出1.mp4  40.29M

|   |   ├──2-DEMO效果演示1.mp4  39.61M

|   |   ├──3-backbone特征提取模块1.mp4  28.69M

|   |   ├──4-注意力机制的作用与效果分析1.mp4  31.02M

|   |   ├──5-特征融合模块实现方法1.mp4  29.34M

|   |   ├──6-cross关系计算方法实例1.mp4  29.34M

|   |   ├──7-粗粒度匹配过程1.mp4  49.84M

|   |   ├──8-完成基础匹配模块1.mp4  63.37M

|   |   └──9-精细化调整方法与实例1.mp4  42.77M

|   ├──13_项目补充-谷歌开源项目BERT源码解读与应用实例  

|   |   ├──1-BERT开源项目简介1.mp4  41.30M

|   |   ├──10-构建QKV矩阵1.mp4  50.69M

|   |   ├──11-完成Transformer模块构建1.mp4  40.77M

|   |   ├──12-训练BERT模型1.mp4  54.63M

|   |   ├──2-项目参数配置1.mp4  106.71M

|   |   ├──3-数据读取模块1.mp4  54.24M

|   |   ├──4-数据预处理模块1.mp4  40.05M

|   |   ├──6-Embedding层的作用1.mp4  30.95M

|   |   ├──7-加入额外编码特征1.mp4  42.41M

|   |   ├──8-加入位置编码特征1.mp4  23.61M

|   |   ├──9-mask机制1.mp4  36.74M

|   |   └──tfrecord制作1.mp4  51.44M

|   ├──14_项目补充-基于BERT的中文情感分析实战  

|   |   ├──1-中文分类数据与任务概述1.mp4  83.52M

|   |   ├──2-读取处理自己的数据集1.mp4  53.05M

|   |   └──3-训练BERT中文分类模型1.mp4  72.25M

|   ├──1_课程介绍  

|   |   └──课程介绍1.mp4  14.86M

|   ├──2_自然语言处理通用框架BERT原理解读  

|   |   ├──1-BERT任务目标概述.mp4  11.51M

|   |   ├──10-训练实例.mp4  24.14M

|   |   ├──2-传统解决方案遇到的问题1.mp4  22.63M

|   |   ├──3-注意力机制的作用1.mp4  14.76M

|   |   ├──4-self-attention计算方法1.mp4  23.74M

|   |   ├──5-特征分配与softmax机制1.mp4  21.28M

|   |   ├──6-Multi-head的作用1.mp4  19.34M

|   |   ├──7-位置编码与多层堆叠1.mp4  16.81M

|   |   ├──8-transformer整体架构梳理.mp4  22.29M

|   |   └──9-BERT模型训练方法.mp4  20.63M

|   ├──3_Transformer在视觉中的应用VIT算法  

|   |   ├──1-transformer发家史介绍1.mp4  15.88M

|   |   ├──2-对图像数据构建patch序列1.mp4  22.22M

|   |   ├──3-VIT整体架构解读1.mp4  24.37M

|   |   ├──4-CNN遇到的问题与窘境1.mp4  22.39M

|   |   ├──5-计算公式解读1.mp4  24.15M

|   |   ├──6-位置编码与TNT模型1.mp4  25.25M

|   |   └──7-TNT模型细节分析1.mp4  27.59M

|   ├──4_VIT算法模型源码解读  

|   |   ├──1-项目配置说明1.mp4  43.32M

|   |   ├──2-输入序列构建方法解读1.mp4  29.85M

|   |   ├──3-注意力机制计算1.mp4  28.08M

|   |   └──4-输出层计算结果1.mp4  37.77M

|   ├──5_swintransformer算法原理解析  

|   |   ├──1-swintransformer整体概述1.mp4  14.81M

|   |   ├──10-分层计算方法1.mp4  21.75M

|   |   ├──2-要解决的问题及其优势分析1.mp4  22.38M

|   |   ├──3-一个block要完成的任务1.mp4  17.41M

|   |   ├──4-获取各窗口输入特征1.mp4  19.04M

|   |   ├──5-基于窗口的注意力机制解读1.mp4  29.57M

|   |   ├──6-窗口偏移操作的实现1.mp4  24.32M

|   |   ├──7-偏移细节分析及其计算量概述1.mp4  20.46M

|   |   ├──8-整体网络架构整合1.mp4  20.93M

|   |   └──9-下采样操作实现方法1.mp4  22.29M

|   ├──6_swintransformer源码解读  

|   |   ├──1-数据与环境配置解读1.mp4  59.64M

|   |   ├──2-图像数据patch编码1.mp4  37.67M

|   |   ├──3-数据按window进行划分计算1.mp4  31.50M

|   |   ├──4-基础attention计算模块1.mp4  27.63M

|   |   ├──5-窗口位移模块细节分析1.mp4  36.86M

|   |   ├──6-patchmerge下采样操作1.mp4  25.28M

|   |   ├──7-各block计算方法解读1.mp4  27.95M

|   |   └──8-输出层概述1.mp4  41.16M

|   ├──7_基于Transformer的detr目标检测算法  

|   |   ├──1-DETR目标检测基本思想解读1.mp4  19.32M

|   |   ├──2-整体网络架构分析1.mp4  31.59M

|   |   ├──3-位置信息初始化query向量1.mp4  19.95M

|   |   ├──4-注意力机制的作用方法1.mp4  20.83M

|   |   └──5-训练过程的策略1.mp4  28.39M

|   ├──8_detr目标检测源码解读  

|   |   ├──1-项目环境配置解读2.mp4  40.38M

|   |   ├──2-数据处理与dataloader2.mp4  64.03M

|   |   ├──3-位置编码作用分析2.mp4  47.90M

|   |   ├──4-backbone特征提取模块1.mp4  35.58M

|   |   ├──5-mask与编码模块1.mp4  34.73M

|   |   ├──6-编码层作用方法1.mp4  42.82M

|   |   ├──7-Decoder层操作与计算1.mp4  30.13M

|   |   ├──8-输出预测结果1.mp4  41.25M

|   |   └──9-损失函数与预测输出1.mp4  41.23M

|   └──9_MedicalTrasnformer论文解读  

|   |   ├──1-论文整体分析.mp4  23.77M

|   |   ├──2-核心思想分析.mp4  54.31M

|   |   ├──3-网络结构计算流程概述.mp4  44.51M

|   |   ├──4-论文公式计算分析.mp4  46.97M

|   |   ├──5-位置编码的作用与效果.mp4  46.59M

|   |   └──6-拓展应用分析.mp4  56.57M

└──10_图神经网络实战  

|   ├──1_图神经网络基础  

|   |   ├──1-图神经网络应用领域分析.mp4  26.44M

|   |   ├──2-图基本模块定义.mp4  10.56M

|   |   ├──3-邻接矩阵的定义.mp4  16.11M

|   |   ├──4-GNN中常见任务.mp4  19.22M

|   |   ├──5-消息传递计算方法.mp4  14.27M

|   |   └──6-多层GCN的作用.mp4  13.04M

|   ├──2_图卷积GCN模型  

|   |   ├──1-GCN基本模型概述.mp4  13.29M

|   |   ├──2-图卷积的基本计算方法.mp4  12.60M

|   |   ├──3-邻接的矩阵的变换.mp4  18.42M

|   |   └──4-GCN变换原理解读.mp4  21.16M

|   ├──3_图模型必备神器PyTorch Geometric安装与使用  

|   |   ├──1-PyTorch Geometric工具包安装与配置方法.mp4  45.11M

|   |   ├──2-数据集与邻接矩阵格式.mp4  51.97M

|   |   ├──3-模型定义与训练方法.mp4  41.96M

|   |   └──4-文献引用数据集分类案例实战.mp4  47.79M

|   ├──4_使用PyTorch Geometric构建自己的图数据集  

|   |   ├──1-构建数据集基本方法.mp4  13.52M

|   |   ├──2-数据集与任务背景概述.mp4  21.68M

|   |   ├──3-数据集基本预处理.mp4  31.55M

|   |   ├──4-用户行为图结构创建.mp4  36.72M

|   |   ├──5-数据集创建函数介绍.mp4  34.91M

|   |   ├──6-网络结构定义模块.mp4  36.92M

|   |   ├──7-TopkPooling进行下采样任务.mp4  31.35M

|   |   ├──8-获取全局特征.mp4  25.75M

|   |   └──9-模型训练与总结.mp4  35.88M

|   ├──5_图注意力机制与序列图模型  

|   |   ├──1-图注意力机制的作用与方法.mp4  16.58M

|   |   ├──2-邻接矩阵计算图Attention.mp4  21.44M

|   |   ├──3-序列图神经网络TGCN应用.mp4  12.63M

|   |   └──4-序列图神经网络细节.mp4  23.72M

|   ├──6_图相似度论文解读  

|   |   ├──1-要完成的任务分析.mp4  47.84M

|   |   ├──2-基本方法概述解读.mp4  52.72M

|   |   ├──3-图模型提取全局与局部特征.mp4  47.46M

|   |   ├──4-NTN模块的作用与效果.mp4  41.14M

|   |   ├──5-点之间的对应关系计算.mp4  51.26M

|   |   └──6-结果输出与总结.mp4  71.22M

|   ├──7_图相似度计算实战  

|   |   ├──1-数据集与任务概述3.mp4  18.16M

|   |   ├──2-图卷积特征提取模块3.mp4  55.97M

|   |   ├──3-分别计算不同Batch点的分布3.mp4  31.75M

|   |   ├──4-获得直方图特征结果.mp4  21.16M

|   |   ├──5-图的全局特征构建.mp4  31.49M

|   |   ├──6-NTN图相似特征提取.mp4  39.29M

|   |   └──7-预测得到相似度结果.mp4  18.68M

|   ├──8_基于图模型的轨迹估计  

|   |   ├──1-数据集与标注信息解读.mp4  57.58M

|   |   ├──2-整体三大模块分析.mp4  71.88M

|   |   ├──3-特征工程的作用与效果.mp4  41.79M

|   |   ├──4-传统方法与现在向量空间对比.mp4  51.87M

|   |   ├──5-输入细节分析.mp4  50.00M

|   |   ├──6-子图模块构建方法.mp4  42.59M

|   |   ├──7-特征融合模块分析.mp4  47.71M

|   |   └──8-VectorNet输出层分析.mp4  85.50M

|   └──9_图模型轨迹估计实战  

|   |   ├──1-数据与环境配置4.mp4  35.41M

|   |   ├──2-训练数据准备4.mp4  27.74M

|   |   ├──3-Agent特征提取方法4.mp4  37.92M

|   |   ├──4-DataLoader构建图结构4.mp4  28.65M

|   |   └──5-SubGraph与Attention模型流程4.mp4  34.60M


本课链接:https://1000n.com/zhiyejinen/85984.html

最新教程
用户留言

暂无课程咨询信息 [发表课程咨询]